寄托天下
查看: 317|回复: 2

[新西兰留学] 专业:project management vs professional accountancy vs data science vs business analysis [复制链接]

Rank: 2

声望
60
寄托币
71
注册时间
2024-9-9
精华
0
帖子
19
发表于 2025-2-25 19:54:22 |显示全部楼层
目标明确就是留学拿PR,

刚拿到Waikato Project Management硕士offer,下半年入学,1年时间
我是转专业的,原来是文科专业,10年+工作经验,但都是跟project management不相关方向。原专业很难找工作,看到project management不需要本科相关背景,就申请了这个。目标就是毕业后找到工作拿PR,不知道这条路好不好走

除了project management就是master of professional accounting,也有offer。另外申请了data science和business analysis,都是看重不需要本科背景申请的,求建议这几个方向选哪个好些,十分感谢!

project management
professional accountancy
data science
business data analysis
都是master,1年或1年半

使用道具 举报

Rank: 2

声望
60
寄托币
71
注册时间
2024-9-9
精华
0
帖子
19
发表于 2025-2-26 08:40:47 |显示全部楼层
问了一下啊Deepseek,感觉很有价值,分享一下。

---

### **Key Considerations**
1. **Entry-Level Accessibility**:  
   - **Data Science**: Entry-level roles (e.g., Business Analyst, Junior Data Analyst) are more accessible than finance roles if you gain technical skills (Python, SQL) during your master’s.  
   - **Applied Finance**: Entry-level roles (e.g., Investment Analyst, Risk Analyst) are competitive and often require certifications or internships. Your lack of professional finance experience could be a barrier.  

2. **PR Pathways**:  
   - **Data Science** (Green List Tier 1/2) remains the safest PR pathway.  
   - **Applied Finance** relies on employer sponsorship under the Skilled Migrant Category, which is less predictable.  

---

### **Option Comparison**  
#### **1. Data Science (Master of Business Data Science)**  
**Strengths**:  
   - **Green List Advantage**: Direct PR pathway if you secure a Tier 1/2 role (e.g., Data Analyst, Data Scientist).  
   - **Skill Synergy**:  
     - Your AI consulting experience aligns with niche roles like **AI Compliance Analyst** or **Regulatory Data Specialist**.  
     - The program lets you merge finance knowledge with data science (e.g., financial forecasting, risk modeling).  
   - **Entry-Level Roles**:  
     - Target hybrid roles like **Business Intelligence Analyst** (using tools like Power BI/Tableau) or **Fintech Data Analyst** (analyzing financial datasets).  

**Weaknesses**:  
   - Requires upskilling in coding/statistics, but your financial background will help.  

#### **2. Applied Finance (Master of Applied Finance)**  
**Strengths**:  
   - **Relevance to Your Passion**: Directly aligns with your interest in investments and portfolio management.  
   - **Financial Experience Leverage**: Useful for roles like **Investment Analyst** or **Wealth Management Associate**, though employers may still prefer certifications.  

**Weaknesses**:  
   - **PR Risk**: Not on the Green List; success depends on employer demand and salary thresholds.  
   - **Entry-Level Barriers**:  
     - NZ employers often prioritize candidates with CA/CPA or local internships (e.g., at banks like ANZ or ASB).  
     - Your lack of professional finance experience may limit options.  

#### **3. Hybrid Path: Financial Data Analyst**  
   - Combine your Data Science program with finance electives (e.g., financial analytics, fintech).  
   - Target roles like **Quantitative Analyst** (fintech startups) or **Risk Data Modeler** (banks/insurance firms), which value both finance and data skills.  

---

### **Recommendation**  
**1. Stick with Data Science**  
   - **Why**:  
     - **PR Priority**: Green List eligibility outweighs the appeal of finance roles.  
     - **Career Flexibility**: Use your finance knowledge to specialize in financial analytics, AI-driven risk modeling, or fintech. For example:  
       - Analyze investment trends using machine learning.  
       - Develop compliance tools for NZ’s financial sector.  
     - **Entry-Level Edge**: Highlight your finance knowledge and portfolio management as proof of analytical rigor in job applications.  

**2. Only Choose Applied Finance If**:  
   - You’re confident about securing internships during the program (to gain NZ experience).  
   - You’re willing to pursue CFA or NZ certifications post-graduation.  

---

### **Next Steps**  
1. **Program-Specific Actions**:  
   - Contact program advisors to ask:  
     - Can you take finance electives (e.g., fintech, financial analytics)?  
     - Do they partner with NZ financial/tech firms for capstone projects?  
   - Example: Cornell’s MPS in Applied Statistics partners with companies like IBM for real-world projects – see if the target program offers similar opportunities.  

2. **Skill Development**:  
   - Use your master’s to build a portfolio of finance-related data projects (e.g., stock prediction models, portfolio optimization algorithms).  

3. **Networking**:  
   - Join NZ fintech communities (e.g., FinTech NZ) and connect with firms like Sharesies or Harmoney to explore hybrid roles.  

---

### **Final Thoughts**  
Your finance and investment passion add value but don’t sufficiently offset the PR risks of Applied Finance. **Data Science remains the optimal choice**, but you can strategically position yourself at the intersection of finance and AI/analytics to leverage both skill sets. If you later pursue CFA, you could transition into senior finance roles post-PR.

使用道具 举报

Rank: 14Rank: 14Rank: 14Rank: 14

声望
193
寄托币
9069
注册时间
2018-8-29
精华
15
帖子
502

在任资深版主 香港offer勋章 美国offer勋章 19周年勋章

发表于 2025-2-26 10:05:02 |显示全部楼层
有意思

使用道具 举报

RE: 专业:project management vs professional accountancy vs data science vs business analysis [修改]
您需要登录后才可以回帖 登录 | 立即注册

问答
Offer
投票
面经
最新
精华
转发
转发该帖子
专业:project management vs professional accountancy vs data science vs business analysis
https://bbs.gter.net/thread-2624595-1-1.html
复制链接
发送
报offer 祈福 爆照
回顶部