新加坡南洋理工大学Simon Redfern教授研究组招收2021秋季博士生 研究课题:高压下材料结构预测 Pressure-driven routes to materialsdiscovery and planetary formation - abundant element compounds at highpressures. We are familiar with the fact thatmatter changes state, due to driving free energy changes, as a function oftemperature or pressure - solid ice transforms to liquid water to gaseous steamas we heat it, or, transforms from solid to liquid as we add sodium chloride.The influence of pressure on matter is less-well studied, but is a muchstronger effect. The discovery of room temperature superconductivity inmixtures of carbon, sulfur and hydrogen recently* is a consequence of thehigh-density conditions of the mixture, held at more than two millionatmospheres’ pressure. Such extraordinary physical phenomena and physicalconditions can be achieved in laboratory experiments, and in computersimulations of materials, but they are also the conditions found deep inplanetary interiors. When pressure is applied, the interatomic distances inmaterials may change significantly, modifying bonding and electronic structure.Pressure is now recognized as an important, if sometimes brutal, force formodifying the structures and properties of materials, so it also offers newopportunities for creating new materials, for materials discovery, and forunveiling novel physical and chemical properties of materials. It is alsoimportant for understanding how planets and their moon satellites form, andultimately how dense matter in the universe behaves. The ten most abundantelements in our galaxy are H, He, O, C, Ne, Fe, N, Si, Mg and S. This projectwill take simple mixtures of light elements from this group (similar to the C-H-Ssuperconductors mentioned above) up to high pressure to explore the new physicsand chemistry that their combinations result in, to shed new light on materialsdiscovery, as well as on planetary formation, geophysical and geochemicalprocesses, and planetary evolution. *Snider, E., Dasenbrock-Gammon, N.,McBride, R. et al. Room-temperature superconductivity in acarbonaceous sulfur hydride. Nature 586, 373–377 (2020). https://doi.org/10.1038/s41586-020-2801-z 申请者背景: 该项目适合对热力学,材料结构和材料特性有深入了解的物理学,化学,材料科学或地球科学专业的毕业生。项目将提供有关高压实验合成和表征方法的培训,并将提供计算材料学方法来佐证和解释实验结果的机会。具有高压实验经验者会有额外优势。 GPA:3.2/4.0(最好3.5+),TOEFL 100/IELTS 6.5,最好有GRE成绩,两封推荐信,申请截止日期可根据情况延后,具体项目要求见项目官网:http://ase.ntu.edu.sg/Programmes/Graduate_Research/Pages/Home.aspx 导师简介: Simon Redfern目前为南洋理工亚洲环境学院教授,理学院院长。Simon博士毕业于英国剑桥大学,曾任剑桥大学地球科学系教授,系主任,和英国,欧洲,北美,中国的学术圈都有较多联系。Simon的研究兴趣很广泛,包括矿物学,晶体学,材料学,地球科学,目前主要研究高温高压下物质的原子结构和物理化学性质,以及行星内部的物质构造。Simon是一个非常随和,易于沟通交流的导师,曾成功培养过24个博士,对学生非常耐心。课题组经常组织烧烤,麻将等团建活动,氛围良好。 导师个人主页: NTU: https://dr.ntu.edu.sg/cris/rp/rp00998 Cambridge: https://www.esc.cam.ac.uk/directory/simon-redfern Google Scholar: https://scholar.google.co.uk/cit ... LtMsAAAAJ&hl=en 博士生待遇: 享受南洋理工大学研究生奖学金,免学费,每月2500新币奖学金,参加学术会议,访学和实验器材均有资金支持。博士期间有前往世界其他顶尖大学交换的机会。 如有申请方面的疑问可发送邮件至shidong001@e.ntu.edu.sg 有意者请在月底前联系Redfern教授,将个人情况和简历发送至simon.redfern@ntu.edu.sg
|